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Abstract

Atrial fibrillation (AF) is the most common sustained ar-
rhythmia worldwide, increasing the risk of stroke, heart
failure, and mortality. Pulmonary vein ablation, which is
usually combined with electroanatomical mapping (EAM)
recording, is a key treatment for AF, but the high rate
of recurrence after ablation remains a significant chal-
lenge. This study characterizes atrial regions associated
with arrhythmic substrates using conventional electrogram
(EGM) markers, such as peak-to-peak voltage or fraction-
ation, as well as new approaches based on EGM morphol-
ogy using Principal Component Analysis.

The atrial geometries of 45 patients were segmented us-
ing a K-Means-based mesh division in pre-ablation EAMs.
Regional EGM markers were then quantified and their
statistics analyzed within each region. Our results show
significant differences in these markers between patients
with and without AF recurrence. Patients with AF recur-
rence exhibited lower voltages (0.98 vs 1.8), higher frac-
tionation (9.29 vs 5.45), greater EGM morphological vari-
ability (0.53 vs 0.61), and increased complexity (55.71 vs
70.78 in r1σ and 20.25 vs 12 in K), all of which can con-
tribute to arrhythmogenesis. These findings highlight the
potential of these markers to predict AF recurrence and
guide personalized treatment.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia and a highly prevalent disease. AF
is progressive, with paroxysmal episodes becoming more
frequent and persistent, which over time can become per-
manent [1]. AF management represents a significant chal-
lenge, and current research focuses on better understand-
ing its mechanisms, progression, and treatment options [?].

Catheter ablation is a widely used treatment strategy for
AF. Pulmonary vein isolation (PVI) is the most commonly

used approach, electrically disconnecting these veins from
the left atrium and returning patients to sinus rhythm.
Unfortunately, a significant proportion of treated patients
(10%-35%) experience recurrence after ablation. In addi-
tion, no significant reduction in the recurrence rate of AF
is observed when second ablations are performed [2].

Although PVI remains the cornerstone of AF ablation,
attention has also been paid to the identification of addi-
tional arrhythmogenic targets beyond the pulmonary veins,
such as the left atrial appendage [3] and the posterior wall
[4], as potential sources for the initiation and maintenance
of AF. Electroanatomical mapping (EAM) has been de-
veloped to better understand and ablate complex AF sub-
strates, identifying low voltage areas, fibrosis, reentry cir-
cuits, and rotational drivers [5].

Current studies focus on extracting important informa-
tion from the EAM. Processing of associated electrograms
(EGMs) has led to the calculation of maps that represent
peak-to-peak voltage [6, 7], fractionation [8], and conduc-
tion velocity [9]. In addition, specific EGM morphologies
have been analyzed to identify electrophysiological mech-
anisms such as pivot sites, wavefront collisions, and con-
duction gaps [8, 10]. Patients with AF recurrence often
exhibit lower voltage, slower conduction, and greater frac-
tionation, reflecting underlying atrial remodeling. While
these markers provide valuable information, they may not
fully capture the complexity and heterogeneity of atrial
EGM features that are critically associated with AF recur-
rence.

In this study, our objective is to go beyond conven-
tional metrics by performing a detailed local analysis of
EGM morphology and signal complexity. Specifically, we
propose and evaluate markers that quantify spatial hetero-
geneity and fragmentation to improve substrate character-
ization. This allows for the distinction between patients
with and without AF recurrence following PVI, providing
a clearer understanding of the electrophysiological remod-
eling underlying arrhythmogenic substrates.
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2. Materials and methods

2.1. Database

In this study, we analyzed the EAM and EGM record-
ings of 45 patients with AF who underwent their first
PVI procedure at Hospital Clı́nico Universitario Lozano
Blesa, Zaragoza (Spain). Six of them (13.33%) experi-
enced recurrence within 12 months after ablation. Three-
dimensional atrial geometry and high density mapping
(HDM) data were acquired before and after ablation with
an HDM system (Rhythmia; Boston Scientific Corpora-
tion, Marlborough, MA) and a basket-type catheter (IN-
TELLAMAP ORIONTM Mapping Catheter; Boston Sci-
entific). In this work, we analyzed preablation maps, as
they provide higher mesh quality than postablation maps
and cover not only the pulmonary veins but also the entire
atria. EAMs include an average of 8309 ± 3051 recorded
EGMs along with the corresponding ablation lines.

2.2. EGMs and mesh processing

HDM data were processed using MATLAB. The unipo-
lar EGMs, initially recorded at a sampling frequency of
953.674 Hz, were bandpass filtered between 30 and 300
Hz. In the atrial meshes, pulmonary veins were excluded
following the ablation lines, resulting in maps with an av-
erage of 3,586 ± 1,519 EGMs. All EGMs were aligned
using cross-correlation, a necessary step to calculate the
markers described in the following section. To perform a
local analysis of the electrical activity of the atria, we di-
vided each mesh into k regions of approximately the same
size, treating each region as a cluster of mesh nodes cj .
K-Means algorithm was used to initially assign k random
centroids on the mesh. Then, vertices xi were assigned to
the nearest centroid based on the Euclidean distance, and
the centroids were recalculated as the mean of the points
Sj within each cluster:

xi −→ Sj∗ , s.t. j∗ = argmin
j

∥xi − cj∥2 (1)

cj =
1

|Sj |
∑

xi∈Sj

xi. (2)

This process was repeated until the centroids no longer
changed significantly. We conducted several analyses that
divided the maps into 40 to 100 regions or clusters. The
regions in each map with fewer than 5 EGMs were dis-
carded to avoid highly unequal distributions of the record-
ings across the mesh.

2.3. EGM markers

The following markers were calculated from the unipo-
lar EGM signals of each patient:

• Peak-to-peak voltage Vp−p, defined as the difference be-
tween the maximum and minimum values of the activation
waveform of each EGM.
• Fractionation index F, defined as the number of peaks
in amplitude-normalized EGMs whose absolute value ex-
ceeds 0.3, a threshold chosen to effectively separate true
peaks from background noise.
• EGM similarity ρ, defined as the average of the Pearson
correlation coefficients computed between each EGM and
the rest of the EGMs in the same region.

Furthermore, for each patient, we identified the EGMs
associated with healthy tissue by selecting the EGMs with
bipolar Vp−p greater than 0.5 mV, as in previous studies
[11]. A spatial transformation was applied to these EGMs
using Principal Component Analysis (PCA). This resulted
in the transformation matrix V . The coefficients of the
original EGMs X expressed as linear combinations of the
principal component basis were defined as Z = V TX .

The proportion of variance in X that is explained by the
first k components, r1...kσ , is measured for each EGM as
the ratio between the sum of the squares of the transformed
coefficients Zj (scores in the j-th principal component) in
the first k components to the total signal variance:

r1...kσ =

∑k
j=1 Z

2
j∑N

j=1 Z
2
j

· 100. (3)

where N is the total number of principal components. This
calculation quantifies how much of the variance can be ex-
plained by the first three components (r1σ , r12σ , r123σ ).

The first three components leave a substantial portion
of variance unexplained, which indicates a greater het-
erogeneity and requires more principal components for
an accurate representation. For this reason, an additional
marker, K, which represents the number of components k
required to explain 90% of the variance in each region was
calculated:

K = min{k | r1...kσ ≥ 90%}. (4)

For each of the seven markers, a unique representa-
tive value per region was computed as the average of the
marker’s values of the EGMs in that region. Therefore,
for each region m = 1 . . .M , we obtain Vp−p(m), F (m),
ρ(m), r1σ(m), r12σ (m), r123σ (m) and K(m).

2.4. Statistics

For each patient and EGM marker, the median value in
all regions was calculated to obtain a unique marker value
per patient. The Mann-Whitney U test was used to test
differences in the values of each marker between patients
with and without AF recurrence. The values in each group
are given as median [IQR]. Differences were considered
statistically significant if the p-value was less than 0.05.
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Figure 1. Example of Vp−p maps for a patient without AF recurrence (a) and one with AF recurrence (b). Red dots
represent EGM recording locations. EGMs in a region are shown. The averaged values in the region of the seven computed
markers are displayed in the tables below.

3. Results

The meshes were divided into N regions, with N ranging
from 40 to 100, with an average surface area per region
ranging from 2.03 to 1.01 cm², respectively. Consistent
results were obtained for all tested numbers and, thus, the
results are subsequently presented only for N=90 regions.
Figure 1 shows Vp−p maps of a patient without (a) and a
patient with (b) AF recurrence, along with examples of two
regions of similar Vp−p values and their seven computed
indices.

Figure 2 shows the differences between the two groups
of patients for the seven markers derived from the EGM
analysis. Patients without AF recurrence exhibited sig-
nificantly higher Vp−p values (1.8 [1.21] vs 0.98 [0.62],
p = 0.007). Furthermore, the similarity index ρ was sig-
nificantly lower in the recurrence group (0.61 [0.11] vs
0.53 [0.07], p = 0.016). EGM fractionation ((F ) was
markedly higher in patients with recurrence (5.45 [2.78] vs
9.29 [2.23], p = 0.014). PCA-based variance markers (r1σ ,
r12σ , r123σ ) showed a decrease in the AF recurrence group,
with the largest differences found for r1σ (70.78 [10.80] vs
55.71 [8.09], p < 0.01). In line with these results, K was
significantly higher in patients with recurrence (12 [5.38]
vs 20.25 [4], p = 0.005).

4. Discussion

In this study, we show that markers derived from pre-
ablation EAM and UHD data can be used to separate the
groups of patients with and without AF recurrence.

Lower Vp−p, higher fractionation and increased mor-
phological variability of EGMs in patients with AF re-
currence point to more severe tissue remodeling and ar-
rhythmogenic substrates. In contrast, patients without re-
currence exhibited significantly higher Vp−p, suggesting
healthier tissue with lower accumulation of fibrosis. Fur-
thermore, lower ρ values and higher F in the recurrence
group reflect greater spatial variability and signal fragmen-
tation, indicative of conduction abnormalities.

The PCA-based markers provide further insight into
these differences. Patients with AF recurrence showed
lower r1σ , r12σ , r123σ values, indicating that atrial EGMs in
these patients require more principal components (calcu-
lated from tissues identified as healthy) to explain the same
amount of variance. This suggests that atrial EGMs in re-
current patients are less spatially coherent and more het-
erogeneous than those in non-recurrent patients, reflecting
a more complex and disorganized atrial substrate. This is
supported by the higher values of K observed in the recur-
rence group, indicating increased signal complexity con-
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Figure 2. Statistical distributions of EGM-derived markers in the groups of patients with (dark blue) and without (turquoise)
AF recurrence. Median, Q1 and Q3 values are indicated by dashed lines. §: p < 0.01; †: p < 0.05.

sistent with the regional fragmentation seen in these pa-
tients.
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